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Overview
Timeline
• Project provides fundamental 

research supporting DOE/industry 
advanced engine development 
projects.

• Project directions and continu-
ation are evaluated annually. 

Budget
• Project funded by DOE/VT
• FY08 funding:

– Sandia: $580k
– Stanford: $115k

• FY09 funding:
– Sandia: $580k
– Stanford: $58k (ends June 2009)

Barriers identified in Light-Duty Roadmap
• Fundamentals of in-cylinder processes for LTC*

– Fuel injection, evaporation, and mixing.
– Heat transfer and thermal stratification.
– Ignition, combustion, and emissions formation.

• Accurate simulation of in-cylinder processes
– Fidelity of engine-combustion models needs to improve. 
– Simulations are needed to guide and interpret experiments.

Partners
• Project lead: Sandia - Richard Steeper
• Stanford University

– Diagnostic development for HCCI labs (Steeper and Dec).
– Includes Sandia hosting of students.

• LLNL and University of Wisconsin
– CFD/kinetics model of automotive HCCI optical engine.

• Industry
– 15 Industry partners in the Advanced Engine Combustion 

Memorandum of Understanding.

* LTC: Low-temperature combustion
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Objectives

• Overall objective: Expand our fundamental understanding of LTC 
in-cylinder processes to help remove barriers to the implementation 
of clean and fuel-efficient automotive HCCI engines.

• Near-term objectives:
– Quantify thermal and chemical effects of negative valve overlap (NVO) strategy 

used to control and extend HCCI combustion.

– Develop and apply diagnostics capable of quantifying in-cylinder NVO 
processes.

– Facilitate model development. Validate and apply the models to interpret and 
supplement experimental data.

– Plan facility upgrade to enhance optical access, extend operating range, and 
incorporate hardware common to industry research engines.
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Milestones

• Complete benchmark experiments of NVO performance in metal and optical 
configurations of the automotive HCCI engine.

• Conduct experiments comparing NVO performance with and without NVO 
fueling for insight into the influence of reforming reactions on main 
combustion.

• Adapt Stanford 2-line planar laser-induce fluorescence (PLIF) diagnostic for 
application during NVO operation.

• Develop an optical diagnostic for CO measurement during re-expansion.

• Validate KIVA model of optical engine during motored NVO operation.
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Approach

• Benchmark NVO low-load operation in metal and optical engines:
– Gain insight into NVO fuel reforming by comparing performance with and without 

NVO fuel injection.

• Determine controlling NVO processes using optical diagnostics:
– Continue Stanford-Sandia diagnostic development. Apply 2-line PLIF diagnostic to 

simultaneously map temperature and composition during fired NVO operation.
– Develop a line-of-sight, IR absorption diagnostic to monitor species concentration 

during NVO reformation.

• Employ modeling tools to guide HCCI experiments and interpret results:
– Apply models ranging from a 1-D full-engine simulation to a 3-D CFD simulation of 

in-cylinder flows and combustion.

• Interact with industry and other researchers to leverage research progress:
– Address DOE- and industry-identified barriers and disseminate research results.
– Adapt current industry hardware for our optical engine to enhance the relevance of 

our research.
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FY09 Accomplishments

• Current work focuses on NVO engine operation 
as a promising strategy for HCCI combustion 
control at low-load conditions.

• Progress of our NVO research in FY09 is 
described in following slides, in this order:

1. NVO engine experiments,
2. Modeling development and application,
3. Diagnostic development and application.

V/Vmin

NVO
recompression/
re-expansion

Main 
compression/

expansion

Valve overlap -150 CAD

Resid. gas fraction ~50%

Geom. compr. ratio 11.5

Speed 1200 rpm

Fuel Iso-octane

Typical operating conditions
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• NVO start of injection (SOI) sweep:
– For early SOI, retarding injection decreases NVO 

IMEP and advances CA50.
– For late SOI, trends change due to reduced time for 

reactions and increased piston wetting.
– Why does decreasing NVO HR advance CA50?

• Conclusion: NVO fueling effects depend on 
multiple factors:

– NVO heat release
– NVO heat-release phasing
– Unreacted NVO fuel
– Reformed NVO fuel

NVO benchmark experiments completed:
• We used split fuel injection, and varied 2 NVO 

parameters:

• NVO fuel percent sweep:
– At low NVO fueling, CA50* is very sensitive to fuel 

percentage.
– Effect disappears at higher fuel percent due to 

insufficient oxygen for complete reaction during NVO.

* CA50: Location of 50% heat release (HR) of main combustion
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We have fulfilled an industry request to compare NVO 
operation with and without NVO fuel injection:

• Goal is to assess the relative importance of NVO 
chemical and thermal effects on main comb. phasing.

• Experiment setup: split-injection vs. main-injection
– Phasing of split-injection experiments is controlled using 

either NVO SOI or NVO fuel percent.
– For the main-injection experiments, we hold main fuel mass 

constant, and then vary (increase) intake temperature to 
achieve normal phasing.

– The split-injection case potentially includes both thermal and 
chemical influences on CA10, while in the main-injection 
case, thermal effects are the only influence.

– Comparing the two thus yields a measure of the chemical 
effect of NVO fueling on main combustion.

• To facilitate comparison of these data, we developed a 
model for estimating cycle temperatures, as explained in 
the next slide…

Main fuel 
only

V/Vmin

Main injection

Main fuel

V/Vmin

+ NVO fuel

Split injection
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• Calculations have also been compared to PLIF 
measurements of in-cylinder temperatures: 

– Measurements were made using Stanford 
diagnostic described later.

– Agreement is good, but still working on tuning.

• Using the temperature calculations for 
comparison of the split- vs. main-injection 
experiments is demonstrated in the following 
slide…
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A cycle-temperature model has been developed for 
comparing NVO engine experiments:
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• Temperature calculations are based on known 
mass, pressure, and volume plus measured 
reference temperatures (intake and exhaust).

• Pegging the closed portions of the cycle to the 
reference temperatures is done using:

– GT Power engine model.
– CHEMKIN ignition temperature estimates.
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• For further evidence, we can examine temperatures 
later in the compression stroke:

– At 70 bTDC, the two cases have moved closer together.
– Since compressive heating spreads all temperatures 

farther apart, some other effect is in play.
– At 15 bTDC, split-fuel temperatures continue to rise.

• Knowledge gained: 
– For NVO fueling, we conclude that exothermic reactions 

occur during mid-compression, driving up temperatures.
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Split- vs. main-injection experiments have provided 
insight into the effects of NVO fuel injection:

• In the bottom graph, temperatures calculated at 
intake valve closing (IVC) are plotted against CA10:

– For the main-injection case, control parameter is TINTAKE: 
as it is increased, TIVC increases, and phasing advances.

– For the split-injection case, as NVO fuel % is increased, 
TIVC increases, and phasing advances.

• Comparing the curves provides insights:
– Temperatures of the two cases are close, meaning that 

NVO fueling has provided about the same thermal 
energy as heating the intake air.

– Yet there is a distinct temperature difference, suggesting 
that some chemical effect makes up the difference.
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A large number of the split- vs. main-injection 
experiments have been completed.

• Analysis of the results has provided a range of insights about chemical effects 
of NVO fuel addition:

– In NVO SOI sweep experiments, observed effects are more complex than for 
the fuel % sweep (previous slide):  For example, separate trends are seen for 
early vs. late NVO injection.

– In another series of experiments, fuel was seeded with LIF tracer (to test potential 
interference by the tracer). In this case, we observe evidence of early endothermic
reactions that suppress temperatures during compression.

• Our accumulated experimental observations emphasize the complex 
influence of NVO fueling on HCCI combustion.

• To help unravel these effects, we depend on our CFD/kinetics code.

• Next slide describes the CFD/kinetics code plus other modeling tools…
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3-D KIVA/kinetics model of our optical engine is now 
capable of simulating fired NVO operation.

• Collaborative project with UW (KIVA) and LLNL 
(multi-zone kinetics) continues to make progress:

– Motored NVO simulations have been validated.
– We are currently validating fired NVO simulations against 

pressure, temperature, and emissions measurements. 
• Graph at right shows good experiment/simulation agreement.
• Image at lower right shows sample time/temperature details of 

the NVO period.
– Model results were published in an SAE journal article.

• We have developed a GT Power 1-D model of our 
engine to estimate flows and temperatures:

– Provides boundary conditions for KIVA model as well as 
a consistency check on KIVA predictions;

– Assists analysis of cycle temperatures.
– Guides selection of experimental conditions.

• As described earlier, we have created a cycle-
temperature model that facilitates our analysis of 
NVO operation.
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Diagnostic development 1:
Applying the 2-line PLIF diagnostic in our NVO engine

• Our joint project with Stanford has created an 
LIF diagnostic for simultaneous composition and 
temperature imaging.

• Details of the system were presented last year.

• Progress this year includes:
1. Adapting the diagnostic for measurements during NVO 

recompression and re-expansion (next 2 slides).

2. Measuring temperatures during fired NVO operation 
for a range of operating conditions. (Use of these 
data to validate our cycle-temperature model was 
discussed earlier.)

3. Quantifying potential interference of LIF tracers on 
HCCI combustion (discussed later).

4. Documenting details of the diagnostic and its 
application in three journal articles.

2 Excimer 
lasersOptical 

engine

Dual-
frame 

camera
R

am
an

 c
el

l

Two-line PLIF diagnostic



14

We have adapted the diagnostic to capture images 
during both the main and NVO portions of the cycle:

• Successful PLIF imaging requires:
– Ability to get tracer into the cylinder and field of view 

(FOV) prior to imaging;
– Avoidance of temperatures that decompose tracer;
– Absence of droplets and interfering fluorescent species.

• We have made successful measurements during:
– Main compression:

• Tracer is premixed in intake air or injected with fuel.
• Relatively little interference from non-tracer molecules.
• Tracer coverage is good due to long mixing times.

– NVO recompression:
• Tracer is injected along with NVO fuel;
• But short mixing time between injection and imaging means 

that tracer does not cover the full FOV.
– NVO re-expansion:

• Tracer injected during recompression has reacted by this 
time.

• But we discovered that main injection can be advanced 
enough to enable imaging, as described in the next slide…
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A method to enable PLIF measurements during NVO re-
expansion has been devised:

• We use early main injection to make measurement possible:
– Data are desired at the end of NVO, so image capture timing is set just 

before IVO.
– To provide LIF tracer, main injection must be timed before imaging: 

Early enough for evaporation, but not so early that high re-expansion 
temperatures cause tracer decomposition.

• Sample single-cycle image pair at left demonstrates results:
– The limited time between injection and image capture means limited 

fuel/tracer mixing, and only partial coverage of the field of view.
– But in areas where there is sufficient tracer, temperatures are 

successfully mapped.
– Note that stratification in the temperature image includes effects of 

evaporative cooling, but sufficient information is contained in the pair 
of images to separate these effects.

• This work shows that PLIF imaging can be applied during NVO, 
but an important issue remains: what is the possible impact of 
LIF tracers on combustion?

Fuel Mole Fraction  [%]

Temperature  [K]
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We have completed a detailed quantification of the 
effects of LIF tracers on HCCI combustion:

• LIF diagnostics typically rely on fluorescent tracers added to fuel or air flows:
– The tracers can represent a significant fraction of the fuel caloric content.
– In the case of commonly used ketones, the tracers are not normal fuel constituents.
– As a result, the LIF tracers could potentially influence the combustion.

• We conducted a series of experiments to measure tracer impact, using:
– Both single-stage and two-stage-ignition fuels:  iso-octane and n-heptane.
– Two common ketone tracers:  acetone and 3-pentanone.

• Tests uncovered multiple trends, as illustrated in next two slides…
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• Acetone has the opposite effect, retarding main 
combustion.

• Again, CHEMKIN model corroborates the trend.

We measured and modeled the effects of seeding 
iso-octane with 3-pentanone and acetone:

• 3-Pentanone tracer advances the main combustion 
phasing of iso-octane.

• CHEMKIN engine simulator captures the trend well 
(although the single-zone model means combustion 
duration is artificially short).
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• But most importantly, we also found that it is easy to 
compensate for tracer effects via intake temperature:

– Bottom graph shows that an intake temperature increase of 
10 K re-establishes the original main-combustion phasing 
(acetone shown here).

– Compensation for iso-octane + tracers requires smaller ΔT.

• Knowledge gained from the study:
– Effect of LIF tracers on HCCI combustion is not trivial.
– However, the magnitude of the effects is small enough to 

allow compensation by modifying inlet temperatures.
– Details are documented in an SAE journal article.
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The experiments also characterized tracer seeding of 
n-heptane fuel:

• For the 2-stage fuel n-heptane, we found that both 
tracers retard combustion phasing:

– Top graph shows 3-pentanone results, but phasing retard is 
similar for acetone.

– Both low- and high-temperature reactions are retarded.
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Diagnostic development 2:  We have designed and are 
testing an IR-absorption monitor for NVO use:

• Decoding fuel reformation is a key to successfully 
developing NVO:

– Temperature measurements and analysis discussed 
earlier provide part of the picture;

– But composition measurements are crucial to mapping 
NVO reforming reactions.

– CO is an obvious marker of reaction progress, and a good 
candidate for optical detection.

• To address the need, we built a simple, IR-absorption 
diagnostic for CO detection:

– Near-IR, tunable diode laser light is delivered by fiber and 
detected at 2x modulation frequency for improved SNR.

– Multi-pass, line-of-sight design provides time-resolved, 
spatially averaged measurements.

– The goal is sufficient sensitivity to record in-cylinder CO 
concentrations during NVO re-expansion with crank-angle 
resolution.
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Bench test results are positive:

• Sensitivity achieved to date is sufficient (but not yet 
maximized):

– Using 6 passes, we currently capture sufficient signal to 
detect CO as low as 4000 ppm (graph at left).

– Expected end-of-NVO concentrations are 5k – 15k ppm.

• Setup of bench tests will make switch to engine easy:
– Identical geometry allows bench-optimization of sensitive 

optical alignment.

• The diagnostic is nearly ready for engine testing, 
and following that, we will have a new tool to 
advance our analysis of NVO performance.

Detection limit

Benchtop CO 
absorption data
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Future Work

• Measure the variation in end-of-NVO concentration of CO during NVO parameter 
sweeps using absorption diagnostic. Determine correlation of CO concentration with 
NVO fuel, cycle temperatures, and combustion performance.

• Measure the performance effect of seeding intake air with CO during main-injection 
experiments for further insight into chemical effects of NVO fuel injection.

• Complete validation of KIVA model for fired NVO operation. Run the code at conditions 
of the split- vs. main-injection experiments to identify controlling reactions and species 
during NVO reforming.

• Improve sensitivity of CO diagnostic to allow calibration using engine exhaust at 
concentrations near 1000 ppm.

• Upgrade engine facility:
– Plan modifications to benefit from the design and installation of similar engine hardware in a new 

Lean-Burn DI Spark-Ignition Fuels Lab (Sjöberg).
– End results will improve optical access, extend operating conditions, and more closely duplicate 

current industry hardware.



22

Summary
• The Automotive HCCI Engine project contributes to the development of low-

temperature combustion strategies that provide a path to achieving national 
emissions and efficiency goals. 

• The project approach combines:
– Optical engine experiments,
– Diagnostic development,
– Engine and combustion modeling.

• Work this year focused on the NVO combustion strategy. Accomplishments included:
– Parametric NVO fueling experiments,
– PLIF measurements,
– CO diagnostic development,
– Model validation. 

• Multiple collaborations leverage the impact of our research:
– DOE’s Advanced Engine Combustion group reviews research results and 

contributes feedback;
– Industry partners provide engine hardware and frequent guidance;
– Stanford, University of Wisconsin, and LLNL participate in the project.

• Next year we will continue our efforts to sort out the effects of NVO fueling on 
HCCI combustion.


	Automotive HCCI Engine Research
	Overview
	Objectives
	Milestones
	Approach
	FY09 Accomplishments
	NVO benchmark experiments completed:
	We have fulfilled an industry request to compare NVO operation with and without NVO fuel injection:
	A cycle-temperature model has been developed for comparing NVO engine experiments:
	Split- vs. main-injection experiments have provided insight into the effects of NVO fuel injection:
	A large number of the split- vs. main-injection experiments have been completed.
	3-D KIVA/kinetics model of our optical engine is now capable of simulating fired NVO operation.
	Diagnostic development 1:�Applying the 2-line PLIF diagnostic in our NVO engine
	We have adapted the diagnostic to capture images during both the main and NVO portions of the cycle:
	A method to enable PLIF measurements during NVO re-expansion has been devised:
	We have completed a detailed quantification of the effects of LIF tracers on HCCI combustion:
	We measured and modeled the effects of seeding �iso-octane with 3-pentanone and acetone:
	The experiments also characterized tracer seeding of n-heptane fuel:
	Diagnostic development 2:  We have designed and are testing an IR-absorption monitor for NVO use:
	Bench test results are positive:
	Future Work
	Summary
	Additional Slides
	Response to Reviewers’ Comments
	Publications and Presentations
	Critical Assumptions and Issues



